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Mechanism of laser damage of transparent semiconductors
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Abstract

Damage of transparent semiconductors and dielectrics under the action of high-intensity laser radiation fluxes is
mainly attributed to absorptive inclusions, which being heated up to the melting threshold, result in thermal stresses due

to the occurrence of microcracks and pores in materials. In this connection a local spherical area molten by laser
radiation and then solidifying in a transparent solid in conditions of external cooling is considered and the temperature
fields in the solidified region are calculated. The temperature fields and temporary stress dependences on thickness of a
solidified region at different speeds of a solidified front are graphically analyzed. The conditions of occurrence of

caverns in irradiated crystals are discussed. The present results can be used in the analysis of the damage processes of
optical components of power laser devices, in particular made from ZnSe semiconductors.r 2001 Elsevier Science B.V.
All rights reserved.
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1. Introduction

Interacting with transparent semiconductors high-
intensity laser radiation fluxes usually result in local
heating of inhomogeneities in the bulk up to the melting

point of the material [1]. This has been attributed to the
presence of light-absorptive macroinclusions and micro-
inclusions with dimension of the order of wavelength in

the crystals. In the last case these inhomogeneities are
heated in a recombination mechanism [2]. It was shown
[3] that there is also an own mechanism of nucleation of

an elementary defect related to accumulating light
energy in a thermal fluctuation of density (tensile strain)
resulting in the formation of a stable germinal crack.

Nevertheless, in all cases laser irradiation of transparent
materials with an intensity close to a melting threshold
results in heating, melting and subsequent solidifying of
local areas in the bulk of a solid. In particular, it is

related to short laser pulses of nano- and femtosecond
duration [4]. Fast crystallization of a laser-melted area in
a crystal forms elastically deformed regions that can

cause the occurrence of microcracks and caverns in

materials. It was shown that the irradiation of highly
pure, specially undoped, ZnSe single crystals with
nanosecond ruby laser pulses can result in both tensile
and compressive strain [5,6] as well as in increase of

optical absorption in the transparency range of the
semiconductor [7]. In the present paper the model of a
local spherical area molten by laser radiation and then

solidifying in a transparent solid in conditions of
external cooling is considered according to the approach
reported in Ref. [8]. The stresses and temperature fields

in the local solidified region of the bulk of a transparent
solid are determined.

2. Definition of the state of solidifying sphere

2.1. The strained state of elastic solid sphere with radial
temperature distribution

We consider a hollow sphere with spherically symme-
trical distribution of temperature TðrÞ: R is the external

radius of a sphere, r0 is the internal radius. The state of
an elastically deformed solid is featured by the strain
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vector U ; strain tensor Uik and stress tensor sik [9]. The
equilibrium equation for a deformed solid is

qsik
qxk

¼ 0; i; k ¼ 1; 2; 3: ð1Þ

The relation between strain tensor and stress tensor,
which characterizes an elastic medium, is expressed by

the Hook law

sik ¼ 2mUik þ K �
2

3
m

� �
Ujjdik � 3KaðT � T0Þdik; ð2Þ

where T0 is the equilibrium temperature. The last item of
this expression represents the stresses which are due to a

temperature variation of a body. Here a is the linear
expansion coefficient, m is the shear modulus and K is
the compression modulus for an elastic body. These

values are regarded as constants. Solving Eqs. (1) and
(2) in the spatial polar coordinates ðr;j; yÞ and using
boundary conditions that both the external and internal

sphere surfaces are stressless srrjr¼r0¼ 0; srrjr¼R¼ 0; the
radial and circular components of the stress tensor can
be obtained in a view:

srrðrÞ ¼
2m9K
3K þ 4m

�
r3 � r30
R3 � r0

2
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;

ð3Þ

sjjðrÞ ¼ syyðrÞ ¼
2m9K
3K þ 4m

2r3 þ r30
R3 � r0
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�
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�
: ð4Þ

2.2. The temperature distribution in solidifying sphere

In a solidifying sphere the temperature field TðrÞ is
related with motion of a solidified front. In order to

define the temperature dependence TðrÞ for Eqs. (3) and
(4) it is necessary to consider the problem of temperature
distribution in a body with varying boundary, the so-
called Stephan problem [10]. The condition on the phase

boundary is

Q

c

qZðtÞ
qt

����
r¼ZðtÞ

¼
qT
qt

����
r¼ZðtÞ

;

where Q is the crystallization heat, c is the heat capacity,
ZðtÞ is the radius of the phase boundary which moves
under the law

ZðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4waðt

*
� tÞ;

q
ð5Þ

where w is the dimensionless parameter characterizing
the intensity of a heat rejection and thus determining the
speed of motion of the phase boundary, a ¼ w=Cv is the
thermal diffusivity, w is the thermal conductivity, Cv is
the heat capacity at constant volume, t is the time and t

*

is the time during which the crystallization is finished.
The initial condition for the solidification boundary is

Zð0Þ ¼ 1 and the second boundary condition requires
stationary temperature at a solidified front

Tðr; tÞjr¼ZðtÞ¼ T
*
;

where T
*
is the crystallization temperature. Solving the

thermal conduction equation [10] for a centrally sym-

metric temperature field in spatial polar frame while
taking into account the initial and boundary conditions
above, one can compute the temperature field in a

solidifying sphere under external cooling:

Tðr; tÞ ¼
Q

c
e�ww3=2

Z w

ðwðr2Þ=Z2ðtÞÞ
exx�3=2 dxþ T

*
: ð6Þ

2.3. Definition of temporary stresses in solidifying sphere

We consider a melted sphere with radius R ¼ 1: The
internal surface of a sphere is a solidified front. The
crystallization process is started at t ¼ 0 and for tX0 a
position of the crystallization boundary r ¼ ZðtÞ is

defined by Eq. (5) and the temperature distribution in
the solidified region Tðr; tÞ is expressed by Eq. (6). It is
guessed that the speed of material elements is small

compared to that of a solidified front. In the solidified
region the equilibrium equations, Eq. (1), and the Hook
law, Eq. (2) are valid. The thickness of the solid region
varies during solidification. Thus it is necessary to

determine stresses in a body with a variable boundary. It
was shown [8] that the description of such problems was
convenient to make using variables characterizing an

instantaneous state of a solid. Such variables are a
vector field of speeds and tensor field of speeds of
deformations. Therefore, in order to characterize an

instantaneous state of a solid, Eqs. (1) and (2) differ-
entiated with respect to time are used. These expressions
are valid for an ideal liquid using the shear modulus
m ¼ 0: *K is the compression modulus for a liquid and the

pressure p of a melt instead of stresses sik is supposed. In
this case the change rate of pressure is used as an
instantaneous variable.

The joint change of state of both a strained liquid and
solid is esteemed. Therefore the conjugation conditions
at the boundary between a melt and solid are used. The

density at the crystallization boundary undergoes a
jump. The conjugation, which is a consequence of the
mass conservation law, reflects this fact:

r v�
dZðtÞ
dt

� �����
r¼ZðtÞ

¼ *r *v�
dZðtÞ
dt

� �����
r¼ZðtÞ

; ð7Þ

where r; *r are the densities and v; *v are the strain speeds
of a solid and melt, respectively. Usually at solidification
of a melt there is a shrinkage which is due to the fact that

the density of a solid is more than the density of a melt
ð *r=ro1Þ; therefore, the liquid appears comprehensively
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tensile ðpðtÞjta0o0Þ: In the process of moving a solidified
front the tension of a liquid increased. At some value of

tension (at the moment of t ¼ tc) the collapse in a liquid
occurs with forming a gap and therefore a cavern in a
solid. Thus, the pressure inside a sphere drops to the

zero point.
On the basis of the discussed model and using the

initial, boundary and conjugation conditions, the
expressions for the temperature dependences and

temporary stresses dependences on thickness of a
solidified region at different speeds of a solidified front
w (or intensity of a heat rejection) were obtained.

Inasmuch as the obtained analytical expressions were
very cumbersome, it was possible to expediently analyze
them graphically in dimensionless variables, using

computer calculation (Figs. 1–4). The dimensionless
variables were defined using the radius of a melted
sphere R ¼ 1 and by dividing the obtained expression on

the combination of dimension constants characterizing
the material [8]. The ZnSe semiconductor constants were
used [11].

3. Analysis of theoretical results

The motion of a solidified front (i.e. an increase in
thickness of a solidified region) is represented as a

decrease in r in the figures. The two cases of the heat
rejection intensity (w1 ¼ 0:01 and w2 ¼ 0:02) are con-
sidered. Fig. 1 demonstrates that the temperature field is

dependent on the thickness of solidified layer. On
moving a solidified front, the temperature on the
external surface of a sphere is lowered in the course of
time because of the heat to be retracted through a more

and more thick layer of a rising solid. When the gap in a
liquid was not derived yet, the radial stresses have the
greatest values on a solidification boundary and
numerically are equal to the pressure of a melt

(envelopes, i.e. thin curves p1 and p2 in Fig. 2) which

Fig. 1. Temperature distributions TðrÞ in a solidifying sphere at
different thicknesses r of solidified region and at different heat

rejection intensities w (solidified front speed).

Fig. 2. Radial stresses srrðrÞ in a solidifying sphere before

forming a cavern at different thicknesses r of solidified region

and at different heat rejection intensities w (solidified front

speed). Envelopes (thin curves) represent a module of the

pressure p of a melt.

Fig. 3. Radial stresses srrðrÞ in a solidifying sphere after

forming a cavern at different thicknesses r of solidified region

and at different heat rejection intensities w (solidified front

speed).
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sharply increases with moving a solidified front. After
formation of a cavern the maximum of radial stresses is

shifted to a solidification boundary on moving a
solidified front (i.e. toward smaller r in Fig. 3). The
circular stresses have negative values at large radius

(Fig. 4) that is an evidence of the formation of tensile
strained areas in a solid. The difference in
the quantitative nature of the stresses is due to the

dependence of the temperature on w in a solidifying
body. A rise of w results in an increase in the heat
rejection intensity (Fig. 1). The intensive cooling of a

body (i.e. an increase in w) results in an increase of
the stresses. The stresses also increase on raising the
thickness of a crystallized region (Figs. 2–4).

The formation of elastically deformed regions
could be the reason for the modification of the

photoconductivity spectra of ZnSe crystals [5,6]
under irradiation with nanosecond ruby laser pulses.
In particular, a shift of the maximum and the red edge

of the spectrum toward lower energies can be attributed
to the formation of deformed regions with
residual stresses (tensile strains) in irradiated crystals.
The formation of these regions with a smaller

bandgap in irradiated samples conformed with the
positive pressure coefficient of the change of the
bandgap dEg=dp ¼ 6�10�9 eV Pa�1 for ZnSe [11]. The
formation of caverns in local solidified areas of crystals
after power laser irradiation (in particular
at absorptive inclusions) could cause a rise of the optical

absorption in the transparency range of the semicon-
ductor [7].
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Fig. 4. Circular stresses sjj; yyðrÞ in a solidifying sphere after
forming a cavern at different thicknesses of solidified region r

and at different heat rejection intensities w (solidified front

speed).
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